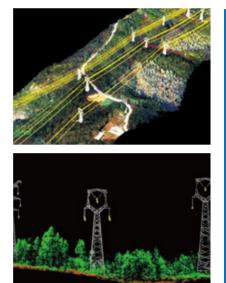


Skylark

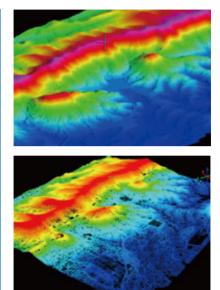
Lightweight UAV LiDAR System

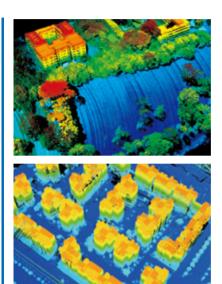
Efficient | Precise | Flexible | Compact

System introduction


> Skylark UAV LiDAR System

Skylark is SureStar' s best-in-class mapping LiDAR system specifically designed for larger drones and manned light aircraft. With an acquisition range of up to 1,500 meters, and a point density 3 times that of a small format 360° FOV airborne LiDAR, Skylark is the perfect choice for 1:500 topographic mapping and other high-density point cloud applications. Its uniquely high point acquisition rate means Skylark can be mounted to flying platforms ranging from large multi-rotor UAVs to fixed-wing aircraft with flying speeds of 100km/h. With cutting-edge technologies inside, Skylark has been applied to transmission line inspection, topographic mapping, 3D city modeling, water conservancy survey, forestry census, and geological disaster assessment.

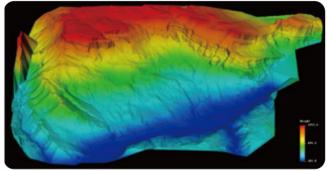


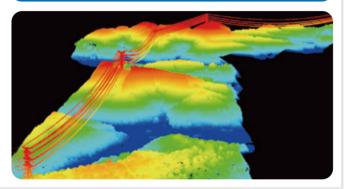

Applications

Power line inspection

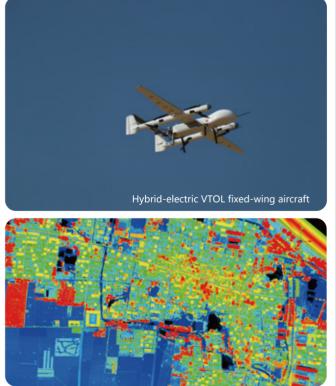
Topographic mapping

3D city modeling



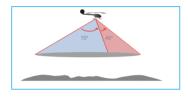

Gasoline-powered UAV helicopter

Electric VTOL fixed-wing UAV			
60 min	endurance with load		
High point density	54 pts/m² at 100 km/h		
	RMS elevation error < 5 cm,		
High accuracy	good for 1:500 mapping		
	Maximum range of 1500 m,		
Long acquisition range	Typical range of 100~700 m		
High-efficiency	A single 60 min flight can cover 50 km		



Hybrid-electric VTOL fixed-wing aircraft 240 min endurance with load

High point density	54 pts/m ² at 100 km/h
	RMS elevation error < 5 cm,
High accuracy	good for 1:500 mapping
	Maximum range of 1500 m,
Long acquisition range	Typical range of 100~700 m
High-efficiency	A single 60 min flight can cover 200 km ²



Features

Large FOV, long acquisition range

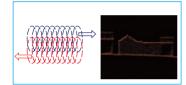
FOV 70°×40° Swath is 1.4 times the acquisition range Maximum range is 1500 m Typical range is 100~700 m

Modular design, flexible configuration Support for a variety of image sensors Integrates with optical, hyperspectral, infrared, and ultraviolet sensors

High frequency, high point density

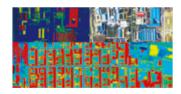
600k pts / sec Point density better than 100 pts / $m^2 \ensuremath{\textcircled{}}$ 200 m range

One-button start, USB storage Easy route planning One-touch power-on startup Built-in pluggable USB Easy to copy and transfer data



One-push switch

Downward elliptical scanning


100% pulse capture, no wasted points; complete vertical surface coverage with careful flight planning, similar to oblique photography.

Simultaneous acquisition of images and point cloud

Integrated image sensor data is synchronized with the LiDAR data. This provides automatic exterior orientation and geo-referencing for image fusion and mapping

Flight management software SS-NAV

Data pre-processing software SS-LiPre

SS-NAV

SS-LiPre

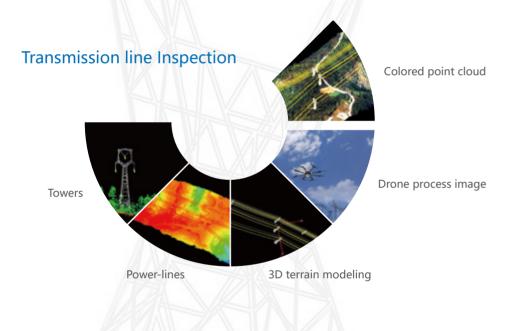
Fully owned IP rights

Functions of SS-NAV:

01 Route planning	05 Pilot navigation	09 Flexible return
02 System parameter setting	06 Trajectory management	10 Log files
03 Operational status monitoring	07 Camera triggering and monitoring	
04 Point cloud real-time display	08 Flexible route switching	

Functions of SS-LiPre:

01 Point cloud decoding	05 Point cloud display
02 Scanner orientation and position solution	06 Image file production
03 Geo-referencing of point cloud	07 Point cloud format conversion
04 Point cloud filtering and de-noising	



SureStar

Transmission line inspection

With high quality point clouds critical for transmission line inspection, there exists a strong demand for a reliable, efficient and cost-effective approach to the collection of LiDAR data. Due to its light weight, easy operation and high point density, giving perfect depiction of cables and towers, and excellent vegetation penetration, Skylark has become the gold standard for this application to China' s 1.2 million kilometers of high voltage power lines.

Case

LiDAR inspection versus image inspection

01 Different purposes: Image inspection is to find existing defects, LiDAR inspection is to find potential threats and

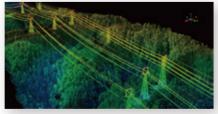
obtain true 3D data for sag assessment, vegetation clearance and other spatial issues.

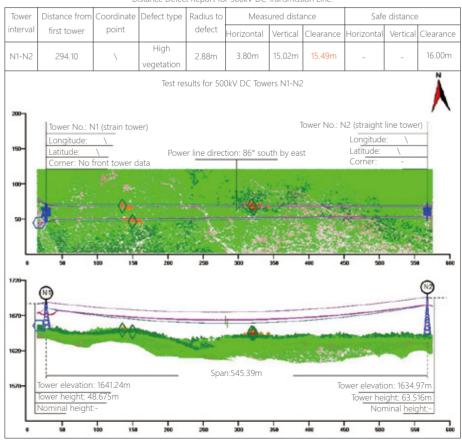
02 Different capabilities: Images cannot give accurate 3D information of the power line corridor, LiDAR can.

Skylark' s advantages

- Operational speed over 80 km / h, no need for reference points
- Point cloud with elevation accuracy of 5 cm at 300m range
- 100% pulse capture = no wasted points, point density of 45 pts / m² at 300 m range
- Independent operation requires only three hours of training for novice users.
- Offset flight paths ensure high levels of security of the infrastructure and safety for the operator

Inspection report (threats analysis)


Equipment preparation


Data collection

Point cloud visualization

Distance Defect Report for 500kV DC Transmission Line.

Skylark

100% pulse capture Careful flight planning = complete vertical surface coverage 0000

Water conservation survey

Case _____

Scope of survey:

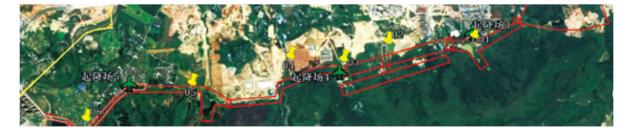
An irregular shaped catchment 10 km in length containing dykes and sluice gates. The altitude difference is about 150 m.

Task:

- Produce a plan of the catchment and extract cross sections and long section of the intercepting trenches to be built.
- The plan scale is 1:500. The cross-section scale is 1:200 with section spacing 50 meters. The longitudinal section scale is 1:500.

Data format:

DWG files, blueprints, editable survey data, surveyors' diaries, field photos.

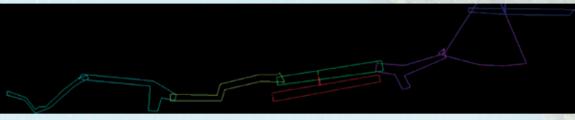


Flight planning after field reconnaissance:

The area was divided into 7 zones for drone take off and landing.

Control point layout and measurement:

Multiple check points were established from the existing control network.



Flight plan and data acquisition:

- 01 Number of take-offs: 8
- 02 Flight altitude: 150-250 m
- 03 Point density: better than 100 pts/m²

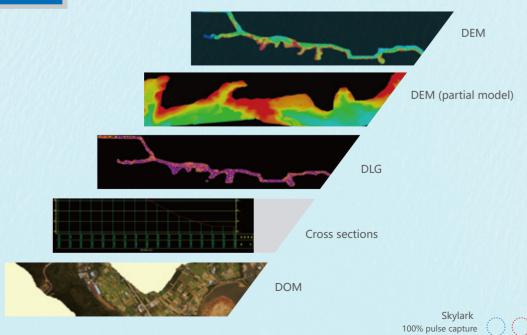
04 Image acquisition: yes 05 Flight path length: 10 km

Flight trajectory file

Accuracy check results:

100 elevation checkpoints throughout the survey area were measured using TerraSolid software and compared to the known values. The results were:

Elevation accuracy:


— 01 Root mean square: 5.7 cm

- 02 Standard deviation: 4.8 cm

— 03 Average error: 3.2 cm

Use	Number	Easting	Northing	Known Z	Laser Z	Dz
	g146	241330.72	2515962.54	24,360	24,507	+0.147
	g153	241252.44	2515942.33	24.850	24.816	-0.034
	g155	241215.72	2515943.09	25.074	25.041	-0.033
	g162	241093.24	2515944.59	25.773	25.870	+0.097
	g156	241197.98	2515943.15	25.171	25.138	-0.033
	g150	241299.73	2515940.88	24.556	24.528	-0.028
	g148	241309.62	2515960.95	24.526	24.617	+0.091
	g154	241233.80	2515942.56	24.961	25.041	+0.080
8	g157	241180.07	2515942.92	25.265	25.251	-0.014
verag	e magnitude	0.0454		Average	dz	+0.0320
Rd dev	riation	0.0485		Mnimum	n dz	-0.0340
Root m	ean square	0.0573		Maximur	n dz	+0.1470

Outputs

SureStar

Case1

Skylark turned a tough survey into an easy task

The daily life of many topographic surveyors is use RTK or total stations to measure the terrain point-by-point. Data collection for some large projects may take several months and expose survey crews to the dangers of nature. With Skylark, the need to continuous transport equipment from point to point is removed, significantly more terrain points are obtained thus increasing the data fidelity, and field crew safety is enhanced.

A major benefit of Skylark is its ability to penetrate densely vegetated areas and access otherwise inaccessible terrain.

Location: Changsha Landform: Mountainous area Altitude difference: 380 m Ground conditions: Remote area covered by dense vegetation.

Field photo

Skylark installed on a multi-rotor drone

Photo of the survey area

The Skylark solution

Field data collection:

01 Flight planning with "SS-NAV" software - flight altitude: 600 m; flight speed: 17 km/h

02 Install Skylark onto the eight rotor drone (1 minute)

03 Base station setup (5 minutes)

04 GNSS and IMU static initialization in open area (5 minutes)

05 Flight and data collection. (15 minutes)

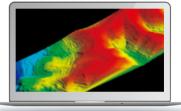
06 Post-flight static state (5 minutes)

Data preprocessing:

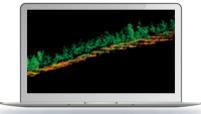
01 Trajectory solution: including attitude and position computation

02 Point cloud solution: produce WGS84 point cloud in LAS format

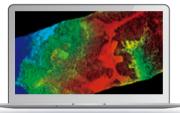
03 Coordinate transformation: Transform the WG84 point cloud into the client' s coordinate system

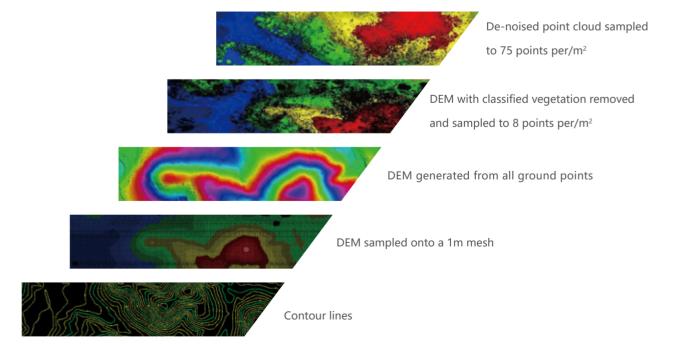

Case1

Data post-processing:


Point cloud de-noising, classification and tiling

Ground points are obtained from the classification which is followed by DEM construction and contour line extraction


Deliverables


Digital elevation model (DEM)

Classified point cloud (yellow: ground points, green: vegetation points)

Digital surface model (DSM)

SureStar

Topographic mapping

Case2 _____

Pre-flight preparation

Skylark mounted on a SD-60B drone

The mounting and brackets and upper hanging plate are installed in the payload bay with damping brackets which allows Skylark to be easily installed and removed; the GPS antenna mount sits on top of the mounting bracket and the antenna is installed last.

Quick assembly Overall damping equipment debugging

Skylark operation verification

Flight overview

Flight area: 28 km² Flight height: 300 meters above ground Flight line interval: 230 meters Flight time: 1 hour and 40 minutes Flight speed: 110 km / h Route length: 120 km

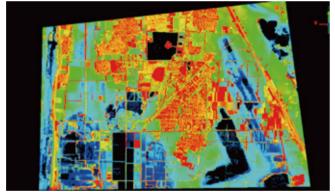
Case2

Achievement

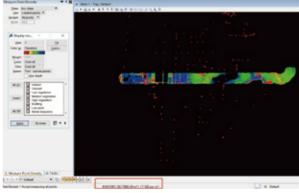
Data quality statistics:

Point density: 17 pts/m²

Image resolution: 0.05 m


Elevation accuracy: 0.06 meters

Working efficiency: 60km² / flight


CHT8024-2011 Airborne Lidar Data Acquisition Technical Specification "Requirements:

- 1:500 scale map, point density \geq 16 points / m²;
- 1:1000 scale map, point density requirement \geq 4 points / m²;
- 1:2000 scale map, point density requirement \geq 1 point / m²;

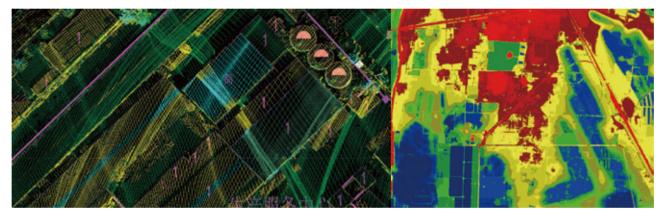
Satisfy 1:500 mapping requirements

Raw point cloud

Point density 17 points / $m^{\scriptscriptstyle 2}$

Image-rendered point cloud figure 1

Image-rendered point cloud figure 2



Case2

Orthophoto: 0.05 m ground sample distance (GSD)

Planimetric accuracy better than 10 cm

DEM

Deinterschen			Actu	al coordinate	es	LiDAR elevation	Elevation error
Point number	Easting			Northing		LaserZ	Dz
20	4878	.606	39266	. 811	41.402	41.5	0.098
21	4877	. 145	39266	. 738	41.759	41.83	0.071
22	4877	. 946	39266	. 879	42.261	42.26	-0.001
23	4877	. 242	39266	. 046	42.651	42.59	-0.061
24	4877	.26	39266	. 762	42.543	42.65	0.107
25	4877	. 975	39266	. 119	43.005	43.09	0.085
26	4877	. 883	39266	. 837	43.081	43.07	-0.011
27	4877	. 878	39265	. 961	43.8	43.78	-0.02
810	4837	.002	39281	. 264	43.957	43.87	-0.087
811	4838	. 157	39284	. 839	45.886	45.88	-0.006
812	4838	. 559	39288	. 215	46.052	45.99	-0.062
813	4839	. 921	39294	. 174	46.835	46.83	-0.005
814	4839	. 911	39298	. 509	46.917	46.91	-0.007
815	4839	. 976	39299	. 798	46.861	46.82	-0.041
816	4839	. 318	39299	. 274	47.044	46.98	-0.064

RMS elevation error 6 cm

Case3

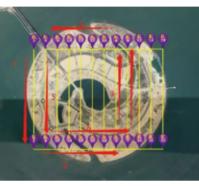
Skylark' s first test on Pisces Island

Case3 _

Flight parameters

Flight altitude: 200 m

Motor speed: 3000 rpm

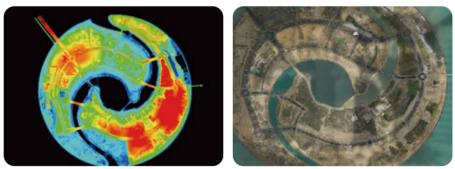

Flight speed: 108 km/h (30 m/s)

Strip width: 280m

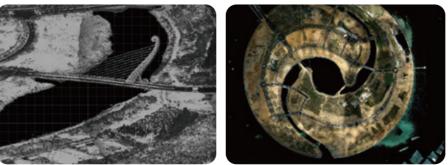
Pulse frequency: 250 kHz

Camera parameters: 42.2 mpix sensor, fixed

focus 28 mm lens, 44 m exposure interval


Route planning

Prepared for takeoff


Data processing

Surestar's SS-LiPre software was used to solve the trajectory, generate the georeferenced point cloud, transform the point cloud coordinates, denoise and classify the point cloud, thus ensuring the users to acquire the perfect data.

Elevation-colored point cloud

Return pulse intensity

Color rendered point cloud

Specifications

Component	Element	Skylark		
	Typical range	100 - 700 m		
	Flight platforms	Drones, manned light aircraft		
	Elevation accuracy	< 5 cm		
	Plane accuracy	< 10 cm		
	No ground control mapping scale	1:500、1:1000、1:2000		
Features	Time synchronization accuracy	<1 μs , including LiDAR, GNSS, IMU, and digital camera		
	Data storage removable USB, data source	LiDAR, GNSS and IMU		
	Operating mode	one-button start		
	System weight	3.9 kg /4.8 kg (+camera)		
	Operating temperature	-20°C~55°C		
	Minimum detection range	3 m		
		AK-1500 <u>900 m @ 20% reflectivity</u> 1500 m @ 80% reflectivity		
	Maximum detection range	AK-1000 600 m @ 20% reflectivity 1000 m @ 80% reflectivity		
		AK-600 <u>300 m @ 20% reflectivity</u> 600 m @ 80% reflectivity		
AK-series	Pulse frequency	50~600 kHz		
laser scanner	Laser safety class	Class I		
	Scanning FOV	70°*40°		
	Scanning mode	Oblique ellipse scanning		
	Scanning frequency	50~200 KHz		
	Range accuracy	10 mm@100 m(5 mm+50 PPM)		
	Angular resolution	0.001°		
	Laser echo	multiple		
	Intensity resolution	12 bits		
	Scanner weight	<4 kg		
	IMU type	high precision IMU		
	IMU refresh rate	200-1024 Hz		
	GNSS antenna line	1-2		
	Satellite systems	GPS L1/L2、GLONASS L1/L2、BDS B1/B2		
Navigation components	Position accuracy (post-processing)	plane 0.01m (locked) 0.3m (GNSS signal loss of lock for 60 seconds)		
		Vertical 0.02m (locked) 0.1m (GNSS signal loss of lock for 60 seconds)		
	Heading (HDG) accuracy (post-processing)	0.009° (locked) 0.010° (GNSS signal loss of lock for 60 seconds)		
	Pitch accuracy	0.005° (locked) 0.006° (GNSS signal loss of lock for 60 seconds)		
	Roll accuracy	0.005° (locked) 0.006° (GNSS signal loss of lock for 60 seconds)		
Camera	Camera model	AFD C42 / Sony a7R2 / Canon 5D (optional)		

SureStar Headquarter

5th Floor, building 1, No.5 YongFeng Road, Haidian District, Beijing, China Tel: +86 10-58717175 Email : bkth@isurestar.com Website: www.isurestar.com

SureStar Suzhou

6th Floor, Building B1, Dongfang Chuangzhi Garden, No. 18, Jinfang Road, Suzhou Industrial Park, China Tel: +86 512-62886015

SureStar Hefei

3rd -5th Floor, Building A2, Zhihui Industrial Park, Baohe Economic Development Zone, Hefei, China Tel: +86 0551-66167968

Surestar International Inc.

A: 28287 Beck Road, Unit D3, Wixom, MI 48393 T: (248) 773-7768